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Abstract

One of the most difficult aspects of ocean state estimation is the prescription of
the model forecast error covariances. The paucity of ocean observations limits our
ability to estimate the covariance structures from model-observation differences. In
most practical applications, simple covariances are usually prescribed. Rarely are
cross-covariances between different model variables used. Here a comparison is made
between a univariate Optimal Interpolation (UOI) scheme and a multivariate OI algo-
rithm (MvOI) in the assimilation of ocean temperature profiles. In the UOI case only
temperature is updated using a Gaussian covariance function. In the MvOlI, salinity,
zonal and meridional velocities as well as temperature are updated using an empirically
estimated multivariate covariance matrix.

Earlier studies have shown that a univariate OI has a detrimental effect on the
salinity and velocity fields of the model. Apparently, in a sequential framework it
is important to analyze temperature and salinity together. For the MvOI an estima-
tion of the model error statistics is made by Monte-Carlo techniques from an ensemble
of model integrations. An important advantage of using an ensemble of ocean states
is that it provides a natural way to estimate cross-covariances between the fields of
different physical variables constituting the model state vector, at the same time incor-
porating the model’s dynamical and thermodynamical constraints as well as the effects
of physical boundaries.

Only temperature observations from the Tropical Atmosphere-Ocean array have
been assimilated in this study. In order to investigate the efficacy of the multivariate
scheme, two data assimilation experiments are validated with a large independent set of
recently published subsurface observations of salinity, zonal velocity and temperature.
For reference, a control run with no data assimilation is used to check how the data
assimilation affects systematic model errors.While the performance of the UOI and

MvOl is similar with respect to the temperature field, the salinity and velocity fields



are greatly improved when the multivariate correction is used, as evident from the
analyses of the rms differences between these fields and independent obsevations. The
MvOI assimilation is found to improve upon the control run in generating water masses
with properties close to the observed, while the UOI failed to maintain the temperature

and salinity structure.



1. Introduction

Data assimilation provides a framework for the combination of the information about
the state of the ocean contained in an incomplete data stream with our knowledge of the
ocean dynamics included in a model. The problem of data assimilation may be formulated in
statistical terms where, because of uncertainty in both observations and models, an estimate
of the state of the ocean at any given time is considered to be a realization of a random
variable. An estimate of the state of the ocean is produced as a blend of observation
and model estimates based on prior knowledge of the error statistics of each, with some
measure of the uncertainty in the estimate. The differences between assimilation methods
lie primarily in the approaches taken to estimate the error statistics associated with the
forward (dynamical) model, the so-called background or forecast error statistics. Since an
accurate representation of the observation and model error statistics is crucial to a successful
data assimilation, a lot of effort has been expended in this direction.

One simplifying assumption that is often made is that the forecast error statistics do
not change significantly with time and thus can be approximated by a constant probability
distribution. This is the basis of the Optimal Interpolation (OI) data assimilation scheme,
also known as statistical interpolation (e.g., Daley 1991, chapters 4 and 5). An alterna-
tive to this assumption is to allow for time evolution of the probability distribution. An
example of such a data assimilation scheme is the Kalman Filter (Kalman 1960), in which
the model and data errors are assumed to be normally distributed and the forecast error
covariance matrix is evolved prognostically. The Kalman Filter can be shown to give an
optimal estimate in the case of linear dynamics and linear observation operator. To account
for nonlinear processes a generalization of the Kalman Filter, the Extended Kalman Fil-
ter uses instantaneous linearization (and often a truncation) of the model equations during
the update of the error covariance matrix and the full equations to update the model (e.g.,
Daley 1991; Ghil and Malanotte-Rizzoli 1991). However, time stepping the forecast error co-

variance matrix is computationally expensive, rendering this method impractical when used



with high-resolution general circulation models. Under certain conditions it is possible to use
an asymptotic Kalman Filter (e.g., Fukumori et al. 1993), where a steady-state covariance
matrix replaces the time-evolving one. An Ensemble Kalman Filter (EnKF) was introduced
by Evensen (1994) based on a Monte Carlo technique, in which the forecast error statistics
are computed from an ensemble of model states evolving simultaneously. The methodology
of the EnKF was further refined by adding pertubations to the observations (e.g., Burgers
et al. 1998) to maintain consistent variance in the ensemble analysis. An application of this
method with the Poseidon ocean model used in this study has been developed by Keppenne
and Rienecker (2002, 2003). Zhang and Anderson (2003) describe an adjustment Kalman
filter (EAKF) which is another modification of the Kalman filter based on a Monte Carlo
approach, and compare it to an ensemble OI scheme (time-invariant forecast error, but spa-
tial structure is derived from a collection of state vectors) as well as an OI with functionally
prescribed covariances. Their conclusion is that when applied to a simple atmospheric model
an ensemble OI can produce reasonably good assimilation results if the covariance matrix is
chosen appropriately.

This study focuses on the importance of the multivariate aspect of the forecast error
covariance in the context of data assimilation using OI. Provided with a fairly good observ-
ing network, the background error structure can be estimated using analysis of spatial and
temporal decorrelation scales, as done in numerous meteorological applications (Ghil and
Malanotte-Rizzoli 1991; Derber et al. 1991). Several studies used a Monte Carlo approach
to estimate forecast error covariance structure from an ensemble of assimilation integra-
tions with perturbed models and randomly selected (Buehner, 2004) or randomly perturbed
(Houtekamer, 1996) observations. However, even for atmospheric data assimilation, the ob-
serving system is not adequate to support a full calculation of background error covariance
statistics, hence model forecasts are often used for error estimation, as, for example, done in
NMC assimilation algorithm (Derber and Parrish 1991).

The vastness and complexity of the domain and relative scarcity of oceanographic obser-



vations would require additional simplifying assumptions in similar calculations. To avoid
imposing severe restrictions on the error covariance calculation due to limited data avail-
ability, this paper explores the efficacy of estimating the forecast error from an ensemble
of model integrations. A Monte-Carlo technique similar to the EnKF is used here. An im-
portant advantage of using an ensemble of ocean states is that it provides a natural way to
estimate cross-covariances between the fields of different physical variables constituting the
model state vector while incorporating model balance relations and the influence of bound-
aries. The idea of a multivariate forecast error covariance matrix has been implemented in
the oceanographic context, for example, to relate the tide gauge data (Cane et al. 1996) and
surface velocity data (Oke at al. 2002) to the dynamically varying quantities in the water
column below.

There are many questions that arise with this approach. For example, how large should
the ensemble be, and more generally, how should it be generated? Other questions are related
to the underlying assumption of the stationarity and the unbiased nature of error statistics
in the OI algorithm. Will a one-time estimate of the forecast error, derived from a Monte
Carlo ensemble, be a good representation of this error at another time, at any time during
assimilation? Or, in other words, what is the variability of the forecast error covariance
structure? What are the dominant time scales? Can this information be acquired and, if so,
used to improve the assimilation scheme?

The primary interest of this study is ocean phenomena taking place on seasonal-to-
interannual time scales. One example of such phenomena is the quasi-regular occurrence
of El Nifio - a large scale warming of near-surface temperature in the eastern equatorial
Pacific Ocean accompanied by a basin wide perturbation in the tilt of the thermocline across
the equatorial ocean (e.g., Philander 1990). The estimate of error statistics derived below
attempts to capture errors associated with such variability. The logical organization of the
paper is as follows. Next the OI assimilation algorithm, model and data are described

(Section 2). Then the forecast error covariance model, a traditional Gaussian model of



the forecast error covariance and the empirical multivariate model of interest are detailed
(Section 3). Then the multivariate error covariance model properties are explored (Section
4). After the experimental setup is decribed, the results of multivariate assimilation are
compared with univariate assimilation (Section 5). The paper concludes with discussion of

the results and further directions of research (Section 6).

2. OI assimilation

a. OI framework

A detailed discussion of the sequential data assimilation algorithms can be found in earlier
literature (see for example, Lorenc (1988), Daley (1991) or Cohn (1997)). Here, only a brief
outline is given to inroduce necessary terminology and notation.

The aim of a data assimilation algorithm is to determine the best estimate of the state
vector based on the estimates available from both model and observations. A dynamic
(prediction) model can be represented in terms of a nonlinear operator ¥(x), where x is
a state vector of length n,. Let d denote a vector of observations which has dimension
ng < n, (typically for ocean applications) and an element of d is not necessarily an element
of the state vector x. A discrete form of the model can be written as x; = Wi_1(xx_1),
where x;, is the forecast state vector at time level £ and ¥;_; is the numerical approximation
to the set of model equations describing the evolution of the state forward from time £ — 1
to k. Similarly, observations available at time k can be denoted as d; and the observation
transformation operator as Hy(xx).

A sequential, unbiased assimilation scheme for the time-varying xj is given by:
Xt = Wy (xf_y) (1)
x? = x| + K, (d,c —H, (xg)) (2)

Here superscript f stands for the forecast and a for the analysis. The sequential data

assimilation schemes that have the form of equation (2) differ from each other by the weight
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matrix K; often called the gain matriz.

The optimality of K; can be defined under certain assumptions about the error statistics.
Most sequential data assimilation algorithms are based on assumptions that the observational
and model errors are unbiased, white in time, spatially uncorrelated with each other and that
their spatial covariances are known (usually it is assumed that, at least initially, the errors
are Gaussian). The observational error may also include any error of representation of the
processes of interest, although such errors will not in general satisfy the assumption of a
white, Gaussian sequence. Without any loss of generality, it is also assumed that the system
noise and the observational noise are uncorrelated with each other. Under these assumptions,
for a linear model and a linear observation transformation operator, H; = Hy, the optimal

K is given by
K, = P/H!] (H,P/H! + R,)"". (3)

Here P£ is the forecast error covariance matrix, which, in general, is time-dependent.
For a high resolution ocean model with the number of state variables on the order of 108,
P£ is extremely expensive to store and evaluate in full. Thus, numerous approaches have
been suggested to simplify the computation of P,]: . The traditional OI method assumes that
P£ = P is approximately constant in time. In the case of observational errors, the matrix R
is often assumed to be diagonal and to contain only information about the level of variance in
the measurement error due to instrumental imperfection and unresolved small-scale signal.
There are means of allowing for simple time evolution of the forecast error variance (see,
for example, Ghil and Malanotte-Rizzoli 1991; Rienecker and Miller 1991), but they are not
considered here. A full evolution of P,J: would be a Kalman filter.

The effects of non-linear dynamics and inhomogeneities associated with ocean boundaries
are implicitly taken into account when the empirical forecast error covariance matrix P is

constructed from model integrations as presented in the next section.



b. Model and forcing

The model used for this study is the Poseidon reduced-gravity, quasi-isopycnal ocean
model introduced by Schopf and Loughe (1995) and used by Keppenne and Rienecker (2002,
2003) for testing the Ensemble Kalman Filter. The model described by Schopf and Loughe
(1995) has been updated to include the effects of salinity (e.g., Yang et al. 1999). The model
was shown to provide realistic simulations of tropical Pacific climatology and variability
(Borovikov et al. 2001). Explicit detail of the model are provided in Schopf and Loughe
(1995). The prognostic variables are layer thickness, temperature, salinity and the zonal and
meridional current components. The generalized vertical coordinate of the model includes
a turbulent well-mixed surface layer with entrainment parameterized according to a Kraus-
Turner (1967) bulk mixed layer model.

For this study, the domain is restricted to the Pacific Ocean (45°S to 65°N) with real-
istic land boundaries. At the southern boundary the model temperature and salinity are
relaxed to the Levitus (1994) climatology. The horizontal resolution of the model is 1° in
longitude; and in the meridional direction a stretched grid is used, varying from 1/3° at the
equator to 1° poleward of 10°S and 10°N. The calculation of the effects of vertical diffusion,
implemented at three-hour intervals through an implicit scheme, are parameterized using a
Richardson number-dependent vertical mixing following Pacanowski and Philander (1981).
The diffusion coefficients are enhanced when needed to simulate convective overturning in
cases of gravitationally unstable density profiles. Horizontal diffusion is also applied daily
using an 8th-order Shapiro (1970) filter. The net surface heat flux is estimated using the
atmospheric mixed layer model of Seager et al. (1994) with monthly averaged time-varying
air temperature and specific humidity from the NCEP-NCAR reanalysis (e.g., Kalnay et al.
1996) and climatological shortwave radiation from the Earth Radiation Budget Experiment
(ERBE) (e.g., Harrison et al. 1993), and climatological cloudiness from the International
Satellite Cloud Climatology Project (ISCCP) (e.g., Rossow and Schiffer 1991).

Surface wind stress forcing is obtained from the Special Sensor Microwave Imager (SSM/I)



surface wind analysis (Atlas et al. 1991) based on the combination of the Defense Meteorolog-
ical Satellite Program (DMSP) SSM/I data with other conventional data and the ECMWF
10m surface wind analysis. The surface stress was produced from this analysis using the
drag coefficient of Large and Pond (1982). Monthly averaged wind stress forcing was applied
to the model. The precipitation is given by monthly averaged analyses of Xie and Arkin
(1997).

Model mean (1988-1997) temperature, salinity and zonal velocity sections along the equa-
tor compare very well with estimates made from observations (Johnson et al. 2002) taken

during an overlapping period (figure 1).

c. Data

The TAO/Triton Array (figure 2), consisting of more than 70 moored buoys spanning
the equatorial Pacific (http://www.pmel.noaa.gov/toga-tao/home.html and McPhaden et
al. 1998), measures oceanographic and surface meteorological variables: air temperature,
relative humidity, surface winds, sea surface temperatures and subsurface temperatures down
to a depth of 500 meters. By 1994 these measurements became available daily approximately
uniformly spaced at 10-15° longitude and 2-3° latitude degrees across the equatorial Pacific
Ocean.

The temperature observations from the TAO/Triton array were the only data type used
during these assimilation experiments since the focus is on well-known deleterious effects of
temperature assimilation in the equatorial waveguide, as discussed, for example, in Troccoli
et al. 2002 and in Troccoli et al. 2003. [In the global assimilation conducted by the NASA
Seasonal-to-Interannual Prediction Project to initialize seasonal forecasts, the global XBT
data base is included.] The standard deviation of the observational error, denoted ora0, is
set to 0.5°C and the errors are assumed to be uncorrelated in space and time. This value
is high compared to the instrumental error of 0.1°C (Freitag et al. 1994) since it also has

to reflect the representativeness error - i.e., the data contains a mixture of signals of various



scales including frequencies much higher than the target scales of assimilation. By tuning

orao we effectively control the ratio of the data error variance to the model error variance.

3. Forecast error covariance modeling

In error covariance structure modeling, one is striving for an accurate representation
of the error statistics as well as for simple and efficient implementation for computational
viability. With little knowledge of the true nature of the model error covariances, one often
has to make assumptions and settle for simple methods that usually have the advantage
of being easy to implement. This section describes two different models for the forecast
error covariance structure, a simpler and less computationally intense and a more elaborate
and more accurate model. For both, an OI framework is used wherein the forecast error

covariance matrix, P/, is assumed to be time-invariant.

a. Univariate functional model

A commonly used analytical error covariance function (e.g., Carton and Hackert 1990
and Ji et al. 1995) has been employed here in the tropical Pacific Ocean region: the spatial
structure of the model temperature (T) forecast error is assumed to be Gaussian in all three
dimensions with scales 15°, 4° and 50 m in zonal, meridional and vertical directions, respec-
tively. The values used in this study were estimated from the ensemble of model integrations
described in the next subsection. Those spatial scales are also (marginally) resolved by the
equatorial moorings which are nominally separated by 10° to 15° in the zonal direction and
by 2° to 3° in the meridional direction. Horizontal scales are comparable to scales used in
similar (3DVar) assimilation schemes (e.g., Ji et al. 1995 and Rosati et al. 1996). There are
several advantages to this error covariance model. For the Gaussian form of the covariance
function, the minimum variance estimate for the least squares minimizing functional is the

maximum likelihood estimate, and the analysis error covariance function is also Gaussian.



It is relatively easy to implement and adapt to parallel computing architecture. The study
by Rosati et al. (1997) also shows that use of such empirical covariance scales, though
simplified, are nevertheless effective for improving seasonal forecasts.

In the present implementation the temperature observations have been processed and
the correction was only made to the model temperature field during each assimilation cycle,
while other variables adjusted according to the model’s dynamic response to the temperature

correction.

b. Monte Carlo method for estimating the multivariate forecast error covariance

A more realistic covariance structure that is consistent with model dynamics and the
presence of ocean boundaries was sought through an application of the Monte Carlo method.
The variability across an ensemble of ocean state estimates was used for a one-time estimate
of the model forecast error statistics. This approach is similar in spirit to the Ensemble
Kalman Filter except that the error covariance does not evolve with time and does not feel
the impact of prior data assimilation, although it could.

The design of this forecast error covariance model was influenced by the need to assimilate
TAO mooring observations for seasonal forecasts. While the Poseidon model has a layered
configuration, the TAO observations are taken at approximately constant depth levels. In
the implementation for this study, the covariances are calculated on pre-defined depth levels.
At each assimilation cycle the model fields are interpolated to these depths, the assimilation
increments are computed on these pre-specified levels, and are then interpolated back to the
temperature grid points at the center of the model layers. The discussion below deals with
the three-dimensional model error covariance matrix whose horizontal structure coincides
with the model grid, and in the vertical is arranged at depths coincident with the nominal

TAO instrument depths.



Consider the non-dimensionalized model state vector

T/O'T
S/O'S
X = U/oy , (4)
V/oy
ssh/ossn

here T, S, U, V and ssh are model variables: temperature, salinity, zonal and meridional
velocities and dynamic height respectively, and o7 s,v,v,ssn] are non-dimensionalizing factors.
For the latter we took the global standard deviation within each of the model fields at a
depth of 100 m (the depth of highest variability, around the thermocline): 07-=0.65, 05=0.08,
oy=0.09, oy=0.08 and 0,,,=0.08 in the corresponding units. Note that or, which represents
the internal variability of the model is comparable to assumed o740 - the observational error
standard deviation, so that the model and data are given comparable weights in assimilation.

The multivariate covariance matrix is
PT,T PT,S PT’U PT,V PT,ssh

PT,S PS,S PS,U PS,V PS,ssh

P = PU,T PU,S PU,U PU,V PU,ssh . (5)
PV,T PV,S PV,U PV,V PV,ssh

Pssh,T Pssh,S Pssh,U Pssh,V Pssh,ssh

If the matrix A™*" contains the m-member ensemble of (anomalous) ocean states as

columns, then P can be computed as

AAT
Prexne — et with rank(P) < min{m,n,}. (6)

The size of P is on the order of n, = 10° (the dimension of the state vector), while its
rank is smaller than the size of the ensemble, m (on the order of 102 in the case of this
study). The estimated error covariance matrix was stored on file and read in during every
assimilation cycle of the OI algorithm. Since the rank of the error covariance matrix P
estimated using this method is no larger than the Monte Carlo ensemble size, it can be
conveniently represented using a basis of empirical-orthogonal functions (eofs), E. Eofs have
been widely employed in oceanographic contexts, and a relevant theoretical background can

be found, for example, in Preisendorfer (1988).
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To compute the eof representation of P, observe that AA” has the same eigenvalues as

ATA, which is only m x m and the eigenvectors of AA” are related to those of ATA as
E =AU(A)?, (7)

where E™*™ contains the eigenvectors of AA”, U™ ™ contains the eigenvectors of ATA
and A™™ = diag(\?, ..., \2) has the eigenvalues of ATA. Then

AA" EAE"

P= =
m—1 m—1

=LL". (8)

The columns of E are orthonormal and the eigenvalues A\?, i = 1,..,m, are the variances.

Equation (3) can thus be rewritten as

K = LLTH"(HLL'H” + R)™!, with L = EAY?(m —1)7'/2, (9)
1) Ensemble generation

As the first test of this methodology, the ensemble of states was generated by forcing the

ocean model with an ensemble of air-sea fluxes:
F, =F +0F,,. (10)

F is the forcing used for the control run, 0F, are interannual anomalies - in phase with
respect to the annual cycle and interannual SST anomalies but with different internal atmo-
spheric chaotic variations. Surface forcing is used for the ensemble generation because this
is probably the dominant source of error in the upper ocean in the equatorial Pacific. Our
approach is similar to Cane et al. (1996) in the sense that all the ensemble variability is a
result of the perturbations to the atmospheric forcing, although the implementation details
differ. Although errors in the synoptic forcing will be large, the focus here is on the longer
time scales of interest for seasonal prediction. The fluxes were obtained from a series of
integrations of the Aries atmospheric model (e.g., Suarez and Takacs 1995) forced by the
same interannually varying sea surface temperatures (SST) and differing only in slight per-

turbations to the initial atmospheric state. The interannual anomalies in surface stress and
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heat flux components were added to seasonal forcing estimated from the sources described
in the section 2(b). This approach attributes all of the ocean model forecast error to un-
certainties in the surface flux anomalies, since differences between the ensemble members
were due to atmospheric internal variability. No perturbations were added to the SST's used
for the atmospheric integrations and so the long-term mean of the heat fluxes are strongly
constrained.

In all, 32 runs were conducted, each 15 years long, corresponding to the 1979-1993 period
of the SST data used to force the atmospheric model. Five-day averages (pentads) of the
model fields were archived. These were subsequently interpolated to the 11 depth levels,
coincident with the depths of the TAO observations. All the covariance estimates have been
made using these fields. Selecting at random a pentad from a 15-year period, a computation
of the eofs of the matrix P was carried out using the ensemble of 32 ocean state realiza-
tions. The first eof explained only about 3% of the total error variance, and this result was
similar for many one-time estimates of P attempted at other randomly selected dates. All
eigenvalues of AA” appear to be so close to each other as to be virtually indistinguishable.
Apparently, this ensemble was not sufficient to reliably define the subspace containing the
leading directions of the model error variability. A possible reason for this result is the small
size of the ensemble, not adequate to resolve the dominant modes of variability of such a
complex system. Thus, the question arose: how to enlarge the ensemble given the accumu-
lated model output? A natural solution would be to include in the computation fields from
the same model run, but selected in such a way as to prevent contamination of the internal
model error variability by the temporal variability, such as lag correlation or interannual
variations.

Thus, a matrix of ensemble members, A, was formed by selecting at random five years
from the 15 year period, then choosing a pentad from each year corresponding to the same
date, say, the first of January. Such choice ensured that the states to be sufficiently separated

in time to be considered independent. This allowed for collection of an ensemble of 160
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members. This limit was set by practical considerations. The mean was removed separately
for each of the 5 years to remove the influence of interannual variability. The eofs of the
matrix P were then computed. The properties of the error covariance matrix constructed in

such a way are discussed below.

2)  Compact support

A persistent problem associated with empirical forecast error covariance estimation is the
appearance of unphysical large lag correlations that are an artifact of the limited ensemble
size (e.g., Houtekamer and Mitchell 1998, fig. 6). We use an ensemble size of 160, yet the
potential numbers of degrees of freedom are O(10°). To alleviate this problem, the multivari-
ate anisotropic inhomogeneous matrix was modified by a matrix specified by a covariance
function that vanishes at large distances; i.e., a Hadamard product of the two matrices
was employed, as discussed by Houtekamer and Mitchell (2001). Keppenne and Rienecker
(2002) implemented the compact support for the Ensemble Kalman Filter developed by the
NASA Seasonal-to-Interannual Prediction Project (NSIPP) for parallel computing architec-
tures, and that implementation is used in the present study. The functional form follows the
work by Gaspari and Cohn (1999) who provided a methodology for constructing compactly
supported multi-dimensional covariance functions. The characteristic scales of this function
were selected in such a way that most of the local features of the empirically estimated error
covariance structure are preserved, but at large spatial lags the covariance vanishes: 30°, 8°
and 100 m in the zonal, meridional and vertical directions respectively.

To visualize the covariance structure, an artificial example is considered with a single
observation different from a background field by one non-dimensional unit. The resulting
correction reflects the model error correlation structure - it corresponds to a section of a
single row of the P matrix. This is also termed the marginal gain since it measures the
impacts of processing a single perfect measurement without reference to other data that

might be assimilated. The correlation between temperature observations at several locations
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across the equatorial Pacific ocean (156°E, 180°W, 155°W and 125°W) at depths roughly
corresponding to the position of thermocline, estimated by the 20°C isotherm depth, and
the temperature elsewhere in the Pacific reveals that with compact support the long range

correlation is eliminated, but the local structure is intact (figure 3).

3)  Multivariate error covariance patterns

The following discussion of the multivariate error covariance model will focus on the
thermocline region in the equatorial Pacific Ocean. The shapes of the correlation structure
associated with a single point differ between the eastern and western regions (figure 3, top
4 panels). The zonal scale tends to be shorter in the western and central and longer in
the eastern part of the basin. Meridional decay scales are similar along the equator, but the
vertical correlation (figure 3, middle 4 panels) varies: shorter and symmetrical in the western
part, slightly skewed in the central part and symmetrical but more elongated in the eastern
part of the equatorial Pacific basin. Zonal sections (figure 3, bottom 4 panels) illustrate the
anisotropy associated with the tilt of the thermocline. This example alone demonstrates
that the uniform temperature error covariance structure is so complex that a homogeneous
error correlation structure is not quite applicable.

Although to date there have been very few salinity observations, this is changing with
the Argo program (http://argo.jcommops.org, and Wilson, 2000). Hence, it is of interest to
explore corrections associated with salinity observations (figure 4). The decorrelation scales
in the western basin are noticeably longer than in the middle and eastern basin, 8 to 10
degrees in zonal and 4 to 6 degrees in meridional direction in the west and 2-4 degrees in
zonal and 1-2 degrees in meridional direction in the east. The scales are notably shorter
than those for temperature (figure 3) except for the meridional scales in the west.

In a similar fashion one can analyze the temperature-salinity, temperature-velocity and
other cross-variable relationships, i.e. the effect of a single unit observation on various fields

- components of the ocean state vector. Corrections in S and U fields associated with a T
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observation and corrections in T and U associated with an S observation are displayed for a
single location, 155°W at, equator (figure 5).

Examples of the temperature-salinity covariance (figure 5) reveal and reflect the com-
plex and irregular nature of the temperature-salinity relationship. The change in salinity
associated with a temperature increment is not necessarily density-compensating. Equato-
rial temperature and salinity south of the equator in the western region are anticorrelated,
while temperature at the equator and salinity immediately to the north are correlated at
150 meters in the western and central Pacific. The scales of influence are short compared
with the temperature-temperature relationship. The anticorrelation is consistent with the
mean thermohaline (T-S) structure, with fresh water overlying a saline core. In the east, the
correlation between T and S is primarily vertical; horizontal scales are very short, on the
order of 2-4 degrees. The positive correlations on the equator, as seen on the meridional
sections of the central basin, are higher towards the northern hemisphere. The negative
correlations to the south are consistent with higher temperatures straddling the cold tongue
with more saline water south of the equator and fresher water north. Thus the covariances
are consistent with vertical and meridional variations.

The relationship between temperature and velocity in the western Pacific reflects tem-
perature changes associated with upstream advection/convergence effects. At 156°E and
at the dateline (not shown), the higher temperatures are associated with a weaker equato-
rial undercurrent in a broad region to the west. At 155°W, the effects are more local and
wavelike with increased temperature associated with a stronger equatorial undercurrent. At
125°W (not shown) the scales are shorter and also wavelike, with changes in temperature
apparently associated with instability waves.

It is possible to infer from the multivariate analysis the effect a single salinity observation
would have on temperature and zonal velocity fields at various locations across the equatorial
Pacific ocean. The high level of positive correlation between salinity and temperature field

in the central and to a lesser degree in the eastern Pacific indicates that the correction of
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the salinity field may have a significant impact on the temperature. The S-U relationship is
weak in the western part of the basin and the correlation patterns are wavelike in the east,

strongly pronounced in the north-south direction.

4. Robustness of the model error covariance estimate

In this section, the sensitivity of the covariance structure to the choice made in populating
the ensemble, i.e., to seasonal or interannual variations in the atmospheric forcing, is explored
to evaluate the robustness of the covariance estimates. The robustness is tested by randomly
sampling the full suite of integrations. Five years out of 15 (the length of the run) were
picked at random, then the same date (e.g., January 1-5 pentad) was taken for each year.
As before, the mean across the ensemble was removed for each year. The procedure was
repeated ten times allowing us to obtain ten realizations of the covariance matrix P. The
pentads were chosen so that realizations from the same season and from different seasons
could be compared. From visual assessment of figures similar to figures 3-5, the correlation
structures represented by the different estimates of P were very similar.

One comparison of the robustness of covariance estimates is pointwise covariance sections
(figure 6) at the same locations as simulated temperature observations as in figures 3-4.
The tight distribution of the decorrelation curves from the 10 different P realizations (thin
lines) indicates good reproducibility of the covariance structure. No significant interannual
variability is apparent within this collection of P matrices. The over-plotted Gaussian curves
show that the decorrelation scales vary at the four locations across the equatorial basin and
can hardly be fitted by a single parameter (scale estimate) in a functional covariance model.
In the UOI covariance model used for comparison below, the temperature decorrelation scales
chosen are consistent with the scales of the empirical error covariance model in the western
and central equatorial Pacific.

The difference among the Monte Carlo estimates of P can also be quantified in terms
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of the dominant error subspaces spanned by each of the ensemble sets. These subspaces
are best described by the orthonormal bases of empirical orthogonal functions (eofs). The
use of eofs allows a spatial filtering of the covariance structures by inclusion of only those
eofs that are non-noise-like, thus defining the dominant error subspace. This procedure
also eliminates problems associated with different levels of variance even though the spatial
structures (covariances) are similar.

Consider the projection of an ensemble of ocean state anomalies onto a given set of eofs.

An anomalous ocean state vector a can be expressed in terms of the eof basis {a} as
a = Eiaiai + 6. (11)

The set of eofs {«} spans the subspace S, of the model error space & and §* is the residual

lying in the complement of S,, i.e., subspace &¢

¢, not spanned by {a}. 8¢ may or may not

contain significant model error covariability information. To assess the information content
not included in S, we examine covariability through the eofs of §*. If the eofs of §* are noise-
like, this would indicate that the eofs {a} captured the significant information regarding the
model error covariance contained in a. This calculation was repeated for several instances
of {a} and § = {a} to assess the invariability of S,.

The spectra of various ensembles of §* C S5 = S\S, are shown in figure 7, where {a}
are calculated from January pentads and {a} are pentads from July. In every case, the
eigenvalues of {a} and {6} are normalized by the variance of the corresponding ensemble
{a}. The eigencurves of {§} are almost flat, characteristic of white noise, and are on order
of magnitude less than the dominant eigenvalues of . Thus the error subspace generated

from this Monte Carlo simulation appears to be robust.

5. Assimilation experiments

The effectiveness of the empirical multivariate forecast error covariance estimate is as-

sessed by assimilating the temperature observations from the TAO moorings. The evaluation
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uses a set of independent (i.e., not assimilated) temperature, salinity and zonal velocity ob-
servations from the TAO servicing cruises. The temperature and salinity data are based
on Conductivity-Temperature-Depth (CTD) profiles and the velocity data from the Acous-
tic Doppler Profiler (ADCP). The comparison uses a gridded analysis of these data, as
described by Johnson et al. (2000).

The assimilation experimental setup is as follows. The model was spun-up for 10 years
with climatological forcing and then integrated with time dependent forcing for 1988-1998
in all the experiments. The assimilation began in July 1996. The initial conditions and the
forcing were identical in all assimilation experiments. In addition to the data assimilation
runs, a forced model integration without assimilation (referred to as the control) serves as
a baseline for assessing the assimilation performance. The assimilation run with a simple
univariate covariance model is denoted UOI. The run with the empirical multivariate forecast
error covariance model is termed MvOI.

In every assimilation experiment, the daily-averaged subsurface temperature data from
the TAO moorings were assimilated once a day. To alleviate the effects of the large shock on
the model resulting from the intermittent assimilation of imperfectly balanced increments,
the incremental update technique was used (Bloom et al. 1996). In this implementation,
the assimilation increment is added gradually to the forecast fields at each time step.

The simulation (i.e., the control, with no assimilation) and two assimilation tests are
cross-validated against the independent temperature, salinity and zonal velocity sections
from Johnson et al. (2002). All of the available observed profiles are used and the statistics
are separated corresponding to four regions: Nifio 4 (160°E-150°W) and Nifio 3 (150°W-
90°W), further divided into two halves, south and north of the equator (0°-5°N and 5°S-0°).
To put the amplitude of the RMSD in perspective, the mean monthly standard deviation
(std) of the model is plotted as well. It is calculated using daily values at the same pre-
defined depth levels on which the analyses are performed. The standard deviation represents

the level of the internal variability in the model for the submonthly temporal scales which
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could in part be responsible for the errors in the monthly averaged profiles assessed against
single synoptic ship observations. In general, the RMSD of the control quantities and the
data is about twice as large as the model standard deviation. The MvOI experiment shows
comparable skill in temperature as the UOI with the greatest reduction in RMSD in the
thermocline in the Nifio 3 region south of the equator (figures 8 and 9). Below 400 meters
neither of the assimilation schemes shows smaller RMSD than the control run due to the
fact that data for assimilation are only available above 500 meters and at this level the
observations are sparse. The transition between the upper part of the water column where
the temperature profile is corrected by the assimilation to the abyss where the data are absent
may cause disruptions in the internal dynamic balances. While the model is attempting to
reinstate them using available mixing tools, it is not able to fully preserve the temperature
structure below the transition region, which is reflected in the larger RMSD (top panels on
figures 8 and 9). Apparently we should have calculated error covariance deeper to take care
of this situation. [The problem has been corrected in the global implementation.] The MvOI
is able, however, to preserve the salinity structure south of the equator and in the Nifio 3
region north of the equator. To a lesser extent the MvOI current structure is also improved
compared with the UOI, especially south of the equator.

The UOI assimilation improves upon the control case in the representation of tempera-
ture, yet the investigation of other model fields, such as salinity, reveals potential problems
in a long-term integration. To illustrate this, consider time series of the equatorial salinity,
averaged between 2°S and 2°N at the thermocline depth compared to the observed salinity
(figure 10). In the UOI experiment, within 3-4 months the salinity structure deteriorates sig-
nificantly. Poor performance of UOI is due to the fact that correcting the temperature field
alone introduces artificial and potentially unstable water mass anomalies whose propagation
and eventual strengthening destroys model dynamical balances. A method to alleviate this
problem, proposed by Troccoli and Haines (1999) relies on the model-derived water mass

properties to correct the model salinity commensurate with the temperature corrections made
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by assimilating temperature observations. The salinity increments are calculated according
to the temperature analysis by preserving the model’s local T-S relationship. While the
proposed method shows improvement in temperature and salinity analyses when tested with
the Poseidon ocean model (Troccoli et al. 2003), it has the limitations that the scheme is de-
signed solely for temperature observations and relies on the model maintaining a consistently
good T-S relationship.

To test how well the assimilation schemes preserve the water mass properties, we consider,
in a manner similar to Troccoli et al. (2003), the T-S relationships in the same subregions
as used above. T-S pairs at each observation are compared with model values interpolated
to the same locations using a T-S grid of granularity 0.25°C by 0.1 (figures 12 and 11). At
least 5 T-S pairs must be found for a colored circle to be plotted to make sure that the
features in the figures are robust. South and north of the equator in both Nino 3 and Nino 4
regions the model without assimilation (top panels) shows good representation of T-S except
in the area of warmest water (cyan circles near the top of the plot) and somewhat in the
representation of the dense cool saline water (few cyan circles below the main body of red
color). The first deficiency is successfully corrected by the MvOI and to a lesser degree
by the UOI. Some observed surface warm saline waters in the Nifio 3 region north of the
equator are not included in any of the model analyses, probably due to errors in surface
forcing that the assimilation is not able to rectify. The problem of the lack of dense saline
water in the model is slightly overcorrected by MvOlI: all cyan circles change to red and some
black circles appear in both regions north and south of the equator. The UOI scheme shows
gross over-production of this type of water south of the equator and to a lesser degree in
the north and it misses the more saline side of the distribution from oy of 22 to 26 kg m=3,
north of the equator as well as in the south. Thus, significant problems are apparent in the
UOI scheme, while MvOlI is able to improve upon the control over almost the entire range
of the T-S diagram.

Meridional cross-sections of the temperature, salinity and zonal velocity (figures 13, 14
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and 15) are compared to a selection of sections prepared and presented in Johnson et al.
(2002). The sections are chosen so that approximately simultaneous sections across the
Pacific basin can be shown after a long period of integration (about 2 years). These sections
are included in the RMSD statistics of figures 8 and 9. The temperature in the UOI
experiment is an improvement over the control, while the salinity structure in the UOI
has little resemblance to data. The model by itself is capable of producing good salinity
and current fields. The UOI salinity cross sections display no penetration of the saline
waters from the south across the equator and erroneous deep extension of high salinity
around 2°S in the central and eastern basin. The MvOI salinity cross sections are more
similar to the observations, although the salinity near the surface at 155°W north of the
equator is somewhat low. The MvOI zonal current is the closest to the observed in the
western and eastern Pacific with a better representation of the deeper subsurface maxima
and a surfacing of the undercurrent at 165°E. The UOI currents reach too deep. At
the dateline the current structure in MvOI is exaggerated compared to observed but the
secondary subsurface maximum at about 4°N (the northern subsurface countercurrent) is
captured in the assimilation. UOI currents are again too weak, particularly at the equator
and reach too deep south of the equator. It is apparent from these figures that the MvOI
corrects the current structure on and close to the equator better than the statistics of figures

8 and 9 might suggest.

6. Conclusion

Two conceptually different forecast error covariance models were considered in the con-
text of the optimal interpolation data assimilation. One is the univariate model of the
temperature error which uses a Gaussian spatial covariance function with different scales in
zonal, meridional and vertical directions. The second is the multivariate error covariance

matrix estimated in the dominant error subspace of empirical orthogonal functions (eofs)
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generated from Monte Carlo simulations. The latter provides an empirical estimate of the
covariability of the errors in temperature, salinity and current fields and spatial structure
consistent with the governing dynamics. Thus during an assimilation cycle not only the
temperature field, but the entire ocean state vector can be updated.

The univariate assimilation scheme brought the temperature field close to observations,
yet the structure of the unobserved fields (salinity and currents) deteriorated quickly, preclud-
ing long-term integration. Most of the problems with the univariate OI run (no salty tongue
in the south and deep penetration of salinity in the south, currents that are too deep) are due
to neglect of the correlation between temperature and salinity when assimilating tempera-
ture alone which tends to cause spurious convective overturning. The multivariate scheme
more successfully corrects the salinity and currents as verified by independent observations.

The empirical error covariance model presented in this study is an initial estimate of the
forecast error covariance, and is used throughout the assimilation under the assumption that
the forecast error statistics do not change significantly in time or after prior assimilation.
The robustness of such an estimate was investigated and it was found that it does not exhibit
significant seasonal or interannual variability, although there are not enough simulation years
to distinguish among statistics during El Nino, La Nina and normal years.

The empirical multivariate forecast error covariance model provides important informa-
tion regarding the error statistics of all the model fields, prognostic or diagnostic. This gives
a natural way to include into the state estimation process observations of different types, for
example, the sea surface height, which is often a model diagnostic.

Further developments are underway in implementing the MvOI method for the global
ocean model configuration, particularly improving the ensemble statistics by including syn-
optic perturbations to the forcing fields, perturbations to the model parameters and initial
conditions. It is more natural, taking into account the Poseidon ocean model formulation,
to consider the covariances of the model variables within the quasi-isopycnal layers. Inves-

tigations are also underway to make the MvOI scheme more efficient in a reduced space by
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including only a limited number of leading eofs.
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LIST OF FIGURES

F1G. 1. Equatorial cross-section of the Poseidon model means (1988-1997) of tempera-
ture, salinity and zonal velocity (right panels) and corresponding data-based estimates (left
panels) from Johnson et al.(2002).

Fi1c. 2. Map of the TAO array, consisting of approximately 70 moored ocean buoys in
the Tropical Pacific Ocean.

Fic. 3. Examples of correlation structure derived from a 160 member ensemble. The
compact support is applied as described in the text. Contour interval is 0.1. Crosses mark
the position of the simulated observation.

Fi1c. 4. Same as in figure 3 but for salinity.

Fic. 5. Examples of correlation structure derived from a 160 member ensemble. The
compact support is applied as described in the text. Various combinations of observed and
updated variables are presented. Contour interval is 0.1. Crosses mark the position of the
simulated observation.

F1G. 6. One-dimensional decorrelation curves (zonal, meridional and vertical directions)
corresponding to the simulated observation at the specified locations. Each thin solid line
produced by a different realization of the error covariance matrix. Dashed grey lines show
the Gaussian functional error covariance model used in UOL

F1a. 7. Eigenvalues for several realizations of the matrix P (marked «) and the eigen-
values for ensembles of §’s - the residuals of the projections of an arbitrary collection of
anomalous ocean states onto a basis of eofs.

Fia. 8. RMSD between the three model runs (UOI, MvOI and control) and the ob-
servations as a function of depth for the 35 transects. Statistics are grouped by Nino 4
(160°E-150°W) and Nifio 3 (150°W-90°W) regions, and each area is further divided into two
halves, south and north of the equator (0°-5°N) shown here). Temperature RMSD (a-b),
salinity RMSD (c-d) and zonal velocity RMSD (e-f) are shown. Mean monthly standard

deviations of the corresponding model fields for the same regions are shown by stars.



F1G. 9. As in figure 8, but for regions south of the equator (5°S-0°).

Fic. 10. Salinity time series for the control, UOI and MvOlI integrations. CTD ob-
servations are shown where available. Values are averaged between 2°S-2°N at the specified
longitudes.

Fic. 11. Temperature-Salinity diagram for UOI, MvOI and control experiments for
Nino 4 and Nino 3 regions south of the equator. Black dot is plotted for values present only
in the model, cyan - only in observations and points where the model and observations agree
are shown in red.

F1G. 12. As in figure 11, but for regions south of the equator (5°S-0°).

Fic. 13. Meridional profiles of the model and observed temperature. Model fields
are averaged over 1 month, whereas the observations are from individual quasi-synoptic
CTD/ADCP sections (following Johnson et al. 2000).

Fi1c. 14. As for figure 13, but for salinity. Contour interval is 0.2.

F1c. 15. As in figure 13, but for zonal velocity. Contour interval is 0.2 ms~!.
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Figure 1: Equatorial cross-section of the Poseidon model means (1988-1997) of temperature,
salinity and zonal velocity (right panels) and corresponding data-based estimates (left panels)
from Johnson et al.(2002).
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Figure 2: Map of the TAO array, consisting of approximately 70 moored ocean buoys in the
Tropical Pacific Ocean.
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Figure 3: Examples of correlation structure derived from a 160 member ensemble. The
compact support is applied as described in the text. Contour interval is 0.1. Crosses mark
the position of the simulated observation.
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for ensembles of §’s - the residuals of the projections of an arbitrary collection of anomalous
ocean states onto a basis of eofs.
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Figure 9: As in figure 8, but for regions south of the equator (5°S-0°).
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Figure 10: Salinity time series for the control, UOI and MvOI integrations. Values are
averaged between 2°S-2°N at the specified longitudes. CTD observations are shown by stars
where available.



Nifio 4, o°—5°N

30
. lm[mlm II

L oon

25

oo

' '.'-ﬂ' o

20F.

7/’5 n

- eowm a—-—
ry

15 =

Temperature ( C)

o’k?:ont'rvql"' » .-q’é

o cTD o

5 .;.....C.c.)lr.].t.r..!...F.;...R......I..;! ol b

32 33 34 35 36
Salinity

10 =

]

31 37

(B2

".?zog‘_.
25F

20

15

Temperature (°C)

10fF® Yo .
°CTD
... U |I|':'—|.|(|:|T|?||||'|.|||||i;| ?|'||||||'|.||||||;|||||'||
32 33 34 35 36
Salinity

000 ‘0 N -
. emmm——" .
. e X

5
31

Bl vl v by vy vy I

w
~

||||||||||||||||||||r—r|||||||||||||||||||||||||||||||||||

30

‘l%»"

I|l'

25
20

15 .

Temperature ( C)

10f-® MWVOI -
- CTD o
?.‘.’M.YQ.‘.‘T..Q.TP..‘.’.’...|i;:. ||'|.|||||'|.||||||;|||||'|.|

32 33 34 35 36
Salinity

. ..’L%

(&)]

31 37

Temperature (C) Temperature (C)

Temperature ( C)

20

15

10 =

31

sk

20

15

10

5

30

25}

15

10 =

5.
31

30T

P R

s

30T

31

20F.

Nifio 3, 0 -5 N

----uupmnuwmmn ------u-|-unuu|unun

T
]

o
-

‘e
o 00 oo

6‘

o’>c,or'1t'ro.l" s
R . » -
'CTD . l A

EIIRIIIIII;IIIII.IIIIII.IIIIII;IIIIII.I

33 34 35 36

Salinity

r I

32

37

........|.........|..n.....|.........,.........I.........
"u ’
'LX

°

o @ &

L B . .'..‘

o
)

.o’U,ol' ,
scmn
o.U ICT@‘
32 33 34
Salinity

TN AU AN ST AR A |'.|'|

36

w
~

Y ":!!!l ' 'fz% B

'|| I

i
g0 98 ]
Irﬂ_
¢ WOl L
"CTD. A

»

32 33 34 35 36
Salinity

37

Figure 11: Temperature-Salinity diagram for UOI, MvOI and control experiments for Nino

4 and Nino 3 regions north of the equator.

Black dots are plotted for values present only in

the model, cyan - only in observations and points where the model and observations agree

are shown in red.



Temperature (°C) Temperature (C)

Temperature ( C)

Nifio 4,5 S-0

20

15

10 =

30T

25

s

"'""'I'"'"'()'I"""'"I"'"'"'I""""'I"""_"'

- ,:u.ulumum

) control » l
-'CT,D'

r I

31

32 36
Sallnlty

25

20

15

31

30
,:ll.l

10F*®

i l__._f.u il ||||

%

35

|;-|||'|||-||‘||L|'||'||'||.|||||

34
Salinity

36 37

30

20

15

10 =

(&)]

P R

-

. MVOI.-Q’_.-
ecm I

E Q,%.

31

32 34
Salinity

35 36 37

Temperature ( C)

w
by

Temperature (C)

Temperature ( C)

Nifio 3,5 S0

30

15

10 =

25.

20F.

) control
-'CT,D"

s contro I
IIIIIIII 11

n.uuu|-nuunigwuu-u|unun--|---,Luuu|unf-.n-

' 2]

32
Sallnlty

35 36

Salinity

w
~

37

30

25

20

15

10

31

& WOl

32

33 34

Salinity

vg,

Lol ad vy b vy el s 10

Figure 12: As in figure 11, but for regions south of the equator (5°S-0°).
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Figure 13: Meridional vertical sections of the model and observed temperature. Model fields
are averaged over one month, whereas the observations are from individual quasi-synoptic
CTD/ADCP sections (following Johnson et al. 2000). Contour interval is 1°C.
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Figure 14: As for figure 13, but for salinity. Contour interval is 0.2.
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Figure 15: As in figure 13, but for zonal velocity. Contour interval is 0.2 ms™".
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